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RICCI FLOW OF LOCALLY HOMOGENEOUS
GEOMETRIES ON CLOSED MANIFOLDS

JAMES ISENBERG & MARTIN JACKSON

Abstract

Hamilton’s program for using Ricci flow to study Thurston’s three-dimen-
sional geometrization conjecture requires one to understand the Ricci
flow of all locally homogeneous geometries on closed three-manifolds.
We study these flows and describe their characteristic behaviors

1. Introduction

Thurston’s three-dimensional geometrization conjecture [9], [7], claims
that any closed three-manifold Af 3 may be canonically decomposed into
pieces such that each of the pieces admits a locally homogeneous geometry.
Hamilton has proposed a program for proving this conjecture using Ricci
flow. Roughly, the idea is to choose an arbitrary metric on M ? and then
deform this metric via the (normalized) Ricci flow equation

(1 (—% =—2Ric+%(R)g,
where (R) denotes the average of the scalar curvature R over M 3. One
hopes to relate the local singularities of the flow to the manifold decompo-
sition in Thurston’s conjecture, and then one hopes to show that the Ricci
flow of the geometry away from each of the local singularities approaches
that of a locally homogeneous geometry in each disconnected piece.

While it has been shown that the Ricci flow for certain classes of three-
metrics converges ([3], [2]), there are many examples known of three-
metrics whose Ricci flows do not converge. It is not surprising that three-
dimensional Ricci flows do not generally converge. Ricci flows can only
converge to Einstein metrics (the zeros of the right-hand side of the Ricci
flow equation (1)), and most three-manifolds (e.g., S% x Sl) do not admit
an Einstein metric.
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If one wishes to use Ricci flow to study the Thurston conjecture, one
must understand completely how the Ricci flows of locally homogeneous
geometries on closed manifolds behave. We have investigated this behav-
ior, and we describe the results here. The types of behavior that occur
are not very diverse. We find that, depending upon the geometry type,
each of the Ricci flows either (a) converges to a constant curvature metric,
(b) asymptotically approaches (as ¢ — oo) a flat degenerate geometry of
either two or one dimensions (“pancake” or “cigar” degeneracy), with the
curvature decaying at the rate 1/z, or (c) hits a curvature singularity in
finite time, with this singularity being just that of the Ricci flow for the
standard metric on S?x S' . Interestingly, in many of these cases one may
avoid singularities and degeneracies by using an alternative normalization
of the Ricci flow.

We discuss and prove these results in §§3 and 4 after reviewing the
classification of locally homogeneous geometries in §2. A few concluding
remarks appear in §5.

2. Locally homogeneous geometries on compact manifolds

A Riemannian metric g on a three-manifold M * is defined to be lo-
cally homogeneous if, for every pair of points x,y € M 3 , there exist
neighborhoods U, of x and v, of p such that there is an isometry ¥
mapping (U, , g| Ux) to (V,, glVy )}, with ¥(x) = y. Generally, these local

isometries do not extend to isometries of the whole space (M, g). If
the local isometries do extend, then the geometry is defined to be homo-
geneous. That is, (M3 , &) 1s homogeneous if, for every pair of points
X,y € Mm? , there exists an isometry ® of (M3 , &) with ®(x)=y. In
this case, the isometry group % (M 3, g) of the geometry acts transitively
on M.

We wish to study (in the next two sections) the Ricci flow of all locally
homogeneous metrics on closed three-manifolds. This task is very much
simplified by the following result: For every locally homogeneous geom-
etry (M 3, g) the universal cover (M\ 3, £) is homogeneous. This result
is an immediate corollary of a theorem of Singer [8] which states that a
locally homogeneous metric on a simply connected manifold must be ho-
mogeneous. One says that the locally homogeneous geometry (M 3 , &) 18
modelled by the homogeneous geometry (]/W\ 3, £) . Since Ricci flow com-
mutes with the cover map u: M (for which g := u"g), we may
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study the Ricci flow of any locally homogeneous geometry by examining
that of its homogeneous model.

In this work we are only concerned with locally homogeneous geome-
tries on closed manifolds. The homogeneous geometries on simply con-
nected manifolds which we use to model locally homogeneous geometries
on closed manifolds fit into nine classes ([5], [7]). These classes are labeled
by the minimal isometry group of the geometries it includes: SO(3) x R,
H(3) [the group of isometries of hyperbolic three-space], H(2)x R! [H(2)
is the group of isometries of the hyperbolic plane], R’, SU(2), SL(2, R),
Heisenberg, E(1, 1) [the group of isometries of the plane with flat Lorentz
metric], and E(2) [the group of isometries of the Euclidian plane]. Each
class contains a family of geometries, labeled by the choice of g (at a
point). For H(3), it is a one-parameter family, with the parameter being
the overall scale of the hyperbolic metric. For SO(3) x R' and H (2) x R,
there are two-parameter families, with the parameters being the scales of
the sphere and R! in the former case, and the scales of the hyperbolic
space and R! in the latter case. For the rest, we have three-parameter
families. This information is summarized in Table 1. Also included in
Table 1 is a list of the dimensions of all possible isometry groups for
members of each class. For example, all of the geometries in H(3) have
a six-dimensional isometry group (that of hyperbolic space H3) , while
those in SU(2) have isometry groups of either six dimensions (the round
sphere), four dimensions (G_ = SO(2)), or three dimensions.

How does all of this fit in with the Eight Geometries (X, G) which
Thurston uses to model locally homogeneous Riemannian metrics on com-
pact manifolds? The Eight Geometries are essentially the same as the nine
classes we have discussed above, except Thurston considers only those
metrics which have maximal symmetry in each of the nine classes. Thus
both R® and E (2) are represented by the geometry E*. We use the nine
classes rather than the Eight Geometries to model locally homogeneous
Riemannian metrics on closed manifolds because, in examining the Ricci
flow of the locally homogeneous geometries, we need to consider metrics
which do not have maximal symmetry. Interestingly, as we shall see, the
Ricci flow of these metrics usually (but not always) tends to approach (if
not converge to) the maximally symmetric members of the class.

In the next two sections we discuss the Ricci flow of the locally homo-
geneous Riemannian metrics on closed manifolds via that of their homo-
geneous models, class by class. For the purposes of this discussion, it is
useful to divide the nine classes into two sets. One set, consisting of classes
R , SU(2), SL(2, R), Heisenberg E(1, 1), and E(2), may be studied by
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TABLE 1. Classes of locally homogeneous
three-geometries on compact manifolds

‘Allowed
Isometry Family
Groups of Metrics Eight
Class Description1 (dimensions)  (parameters)  Geometries
R’ Commutative 3,4,6 3 E?
Simple .
SU(2) compact 3,4,6 3 s3
Simple
SL(2, R) noncompact 3,4 3 SL(2, R)
Heisenberg Nilpotent 3,4 3 Nil
E1,1) Solvable 3 3 Solv
E(2) Solvable 3,4,6 3 E?
H(3) - 6 1 H®
SO(3) x B! - 4 2 ST xR
HQ2) xR - 4 2 H* xR’

treating each geometry as a left invariant metric on a Lie group (that Lie
groups which labels the class). We shall call these the Bianchi classes (after
the Bianchi classification of the associated Lie algebras; see Bianchi [1],
or Ryan and Shepley [6]), and we examine their Ricci flow in §3. The
other set, consisting of classes H(3), H(2) x R', and SO(3) x R', will be
studied (in §4) by using other means.

3. Ricci flow of the Bianchi classes

Let (X 3 , &) be a homogeéneous Riemannian metric, with the Lie group
H acting simply transitively on X 3 (so X 3= H), and with H being
a subgroup of the isometry group of (X 3 , ). Tt follows that one may
always express g in the form

b
(2) g = gabeae B
with {6“} being a left-invariant one-form basis on H , and with g, being
a constant matrix.

The geometries in the Bianchi classes— R , SU(2), SL(2, R), Heisen-
berg, E(1, 1) and E(2)—are all of this sort. Further, one can show that

! These descriptions refer to the Lie algebras of the minimal isometry group of each class.
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for any given metric on one of these classes (all have H unimodular),
one can choose the left-invariant basis {6°} so that (a) the matrix g, is
diagonal, and (b) the structure constants ng , 1.e., those constants such
that

(3) d6° = ;0" n6°,

take the form

(4) Cha = &g’
with m“ a diagonal matrix having entries of values only 0 or 1 or —1.
(The particular expression m“ takes is characteristic of the group; see,
e.g., Ryan and Shepley [6].) Now, generally the basis {H“} which accom-
plishes this simultaneous diagonalization for one metric in a chosen class
is different from that which works for a different metric in the class. How-
ever, analysis of the Ricci flow equations shows that the choice of this
basis is preserved along the flow. We verify this by choosing such a basis,
calculating the Ricci curvature with respect to the basis, and noting that
all off-diagonal Ricci terms are zero.

As shown in [3], Ricci flow preserves isometries. Hence, the Ricci flow
of a metric g contained in one of the Bianchi classes stays in that class.
Based on the above discussion, we can write g, in the form

(5) 8= A4,(0") + By(6°) + C,(6°)°

for some basis {#°} and be assured that the 1-parameter family of metrics
g(t) satisfying the Ricci flow equations with g(0) = g, will take the form

(6) g(1) = A(1)(8")* + B()(8))’ + C(1)(6°)".

We thus deduce that the analysis of Ricci flow for metrics in each of
the Bianchi classes is an ODE analysis involving a system of three equa-
tions for the three variables {A(?), B(¢), C(¢)}. Indeed since volume
is preserved by the normalized Ricci flow equation (1), one could set
A(HB(H)C(t) = 1, and reduce the analysis to two equations for two vari-
ables, but in practice it is convenient not to do so. The particular form of
the equations depends upon the class. We now discuss Ricci flow in each
class.

(a) R’: The geometries in this class are all flat. Thus the Ricci flow
g(t) starting at any metric g, in the R’ class is trivial:

(7) g(t) =g, vt=0.
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(b) SU(2): The SU(2) class admits Einstein metrics, namely the round
metrics on the three sphere. As expected, Ricci flow does converge to these
metrics in this case. We show that it does so exponentially in ¢.

With respect to the basis and parametrization given above, the nonzero
curvature components are

(8a) R, =1i4[4>—(B-C)1,
(8b) Ry, =41BIB" - (4-C),
(8¢) Ry, =1CIC* —(4-B)],
(8d) R=L{[4*— (B~ C)’1+[B’~ (4~ C)’1+[C* - (4~ B)']},
(8¢) [Ric|l” = 1{[4*~ (B~ CO)'T +[B* (4 - O)'F
+[C* ~ (4- B)T}.

The Ricci flow equations are then

(9a) %A = %[—Az(ZA —B-C)+AB - C),
(9b) ditB = %[—32(23 —A-C)+B(4-C)1,
(9¢) ditc = %[—cz(zc —A-B)+C(4- B

In terms of the metric components, the fixed point for Ricci flow occurs
at A = B = C (which are the metric components for the round sphere).
This leads us to calculate the evolution equations for the differences be-
tween 4, B,and C:

(10a) %(A —B)= %[—2(,43 ~ B+ C(4* - BY + C*(4 - B)],
(10b) —%(A —C)= %[-2(,43 —CHY+BUA - CH+ B (4- ),

(10c) %(B ~C) = %[—2(33 ~CH+AB - CH+ A4(B-0)

We can see from the symmetry of the equations that, without loss of gen-
erality, we may assume A4, > B, > C;,. From the evolution equations in
(10) we find that it follows that 4 > B > C for all 7. With this assump-
tion, it is easy to see from equation (9) that C is nondecreasing since
2C-A-B<0.
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We now show that the difference 4 — C decays to zero exponentially.
This follows from rearranging and estimating the evolution equation for
A-C,

%(A ~C)= %[—2(/12 +AC+CH +B(A+C)+ B4~ C)
(11) = %[—2C2—AC—(A—B)(A+C)~(A2—B2)](A—C)
< -2CHA~C).

Integrating this inequality gives

_2¢?
(12) A= C < (4, - Cple

Using this and the inequalities 4 > B > C for all ¢, we conclude that
the flow converges exponentially to the fixed point 4 = B =C =1 (with
the normalization ABC = 1). From (8d) and (8e), it is clear that R and
|IRic]l exponentially approach fixed values, namely % and 3, respectively.

(c) SL(2, R): There is no left-invariant Einstein metric on the group
SL(2, R), so we know that Ricci flow in this class cannot converge. How-
ever, we can show that the flow starting at any SL(2, R) metric has char-
acteristic asymptotic behavior: (i) The curvature of g(z) dies off as ¢
goes to infinity; (ii) Two of the components of the metric increase without
bound while the other shrinks to zero (recall that the product ABC = 1
for all ¢). We say that a Ricci flow which behaves in this way is developing
a “pancake degeneracy.” We now verify these results, including the 1/¢
rate of decay for the curvature.

The nonzero components of the curvature for an SL(2, R) metric of
the form (5) are

(13a) R, =14[4’ - (B-C),
(13b) Ry, = LB[B’ ~ (4+ C),
(13¢) Ry, =iCIC? —(4+B)7,
(13d) R= {4’ - (B-C)']+[B" = (4+ C)'] +[C" - (4 + B)']},
(13¢) |Ricll® = H[4* - (B~ O)'F +[B* - (4 + O)F
+{C* - (4+ BT
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The Ricci flow equations are then

(14a) %A = %[—A2(2A+B+ C)+ A(B - C)1,
(14b) %B = %[—32(23 +A-C)+B(A+C),
/ ,

(14c) —C = %[—C2(2C+A—B)+C(A+B)2].

Now, from equations (14), we see that the system is symmetric under
interchange of B and C (this reflects the nature of the group SL(2, R)).
So, without loss of generality, we may assume B, > C,. Then, calculating
the evolution equation for the difference B — C, we get

(15) %(B ~-C)= %[—2(33 — - AB -+ A4 B-O))

It follows that if B) > C;, then B(z) > C(¢) for all > 0.
Let us now use the inequality B > C in doing estimates on (14c¢), from
which we readily get

(16) L¢ = 2[(BC? + B2C —2C%) + (ABC = AC* + ABC)] > 2.
dt 3 3

Integrating vields

(17a) C(t)>Cy+ %t

and consequently

(17b) B(t) > Cy+ 3t,

so both B and C must grow at least linearly in ¢.
Since ABC =1, we get

(18) A=L<<C+zt)2
BC—\°% 3
so that as B and C grow, A shrinks.

We next show that as B and C grow, they necessarily approach each
other. Note that the above results imply the existence of a value 7 such
that 4 < B for all ¢t > 7. We use this to show that after 7, the dif-
ference B — C decays exponentially to zero. We estimate (15) under the
assumption 4 < B :

%(B -C)= %[—2(32 +BC+C*)—AB+C)+ AY(B-C)
(19) < %[—232 ~2BC-2C*+ 41(B-C)

< 2(-5chB - 0),
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where C_ := C(r). Integrating this gives
(20) B-C<(B,—C)e ™,

where k := 13—0C12 .

In order to determine the asymptotic behavior of the curvature, we first
need upper bounds on B and C. We get this by rewriting and estimating
the evolution equation (14b) for B:

A8 _ 2\ 2B _ 4B+ B*C + A*B + 24BC + BCY|

dt 3
@1) 3 .
= §[(Bzc +BC*-2B%) + AB(4 - B)+24BC] < 3>

where the inequality holds after the value 7 for which 4 < B. We inte-
grate the inequality to get '

(22) B<B, +41,

which also gives us an upper bound on C since C < B for all ¢.

We can now determine the asymptotic behavior of the scalar and Ricci
curvatures. To begin, we examine the behavior of R by rearranging the
right side of (13d) and taking the absolute value to get

(23) IR| =14+ 1(B-C)’ + 4B + AC.

Each term on the right-hand side of this equation can be bounded from
above by using (18), (20), and (22). Since the terms AB and AC have
the slowest decay rate at ! , the overall asymptotic decay rate for |R| is

bounded above by L.

To determine the asymptotic behavior of ||[Ric||, we look separately at
each of the three terms in the expression on the right-hand side of (13e).
The first term can be bounded by first writing

(24) (42~ (B-C)Y P <4a+B-0C)"

From (18) and (20), we can see that this term is asymptotically dominated
by A* which decays as ™% . For the second term, we do a bit of algebra
to get

(25) [B°—~(A+C)’F = [B*~C*—4*—24CT < (B*~-CH*+ A +24°C?,
where the term (B2 -C 2)2 can be factored as
(26) (B> - Y = (B~ C)(B+C).

From (20) and (22) it follows that, for large ¢, this decays as t’¢”". The
term A* decays as 78 , while the term 242C? has the slowest decay
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rate at 1~2. The second term on the right-hand side of (13e) thus has an
asymptotic decay rate of %, A similar argument gives the same behavior
for the remaining term in ”Ric||2 . Thus the overall asymptotic decay rate
for ||Ric|| is 7.

Note that as the Ricci flows in this class evolve toward the pancake
degeneracy, they exponentially approach geometries in the class with max-
imal symmetry: those with isometry SL(2, R) x SO(2).

(d) Heisenberg: Like the SL(2, R) class, the Heisenberg (or “nil”) class
does not contain any Einstein metrics, and hence the Ricci flow of ge-
ometries in this class cannot converge. Again, however, we find that the
Ricci flow of any metric approaches a pancake degeneracy, at the rate
||Ric)| < 1/¢. In this case, the Ricci flow equations are simple enough so
that exact solutions for the flow can be found for any initial metric.

The curvature components for the metrics of the Heisenberg class are:

(27a) R, =14,
(27b) Ry, =-34’B,
(27¢) R, =-14°C,
(27d) R=-14%,
(27¢) [Ric|” = 3R" = 34",
The Ricci flow equations are then
d 4 3
(28a) EA = —§A s
d 2 2
(28b) 7;8=34B,
d 2 -
Starting with the equation for A4, these can be integrated directly to get
(29a) | A=A (1-%R 1",
(29b) B =B, (1- ¥R,
(29¢) C=Cy(1-%R1"*,
where R, = —%A(Z) < 0. We thus see that B and C increase together at

the rate '/* , while A decreases at the rate 2

If we substitute these results into the expressions for the curvature (27),
we obtain
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(30a) IR(1)] = [Ryl(1 - 8R!,

(30b) IRic(z)]| = |Ricyli(1 — B Ry,

so the curvature scalars die off at the rate ¢! .

While the asymptotic behaviors of the flows in the Heisenberg and
SL(2, R) classes are both pancake degenerate (i.e., two diameters expand,
the other shrinks, and the curvature dies off), their behaviors differ in
an important way: As shown above, the two expanding directions in an
SL(2, R) flow converge, so that a generic flow in SL(2, R) approaches
a flow of SL(2, R) geometries with rotational isotropy. The expanding
directions in Heisenberg class Ricci flows generally diverge, however: we
have B — C = (B, — C,)(1 - 13—6-R01)1/ * . Hence generic Heisenberg flows
move away from those with rotational isotropy (i.e., those with B = C).

(e) E(1,1): The E(1, 1) (or “solv”) class again fails to contain any
Einstein metrics and so its Ricci flows do not converge. They are all asymp-
totically “cigar degeneracies” The curvature dies, and while one diameter
expands without bound, the other two diameters shrink to zero. The rate
of curvature decay is 1/¢.

For the E(1, 1) geometries, we calculate the curvature to be

(31a) R, =144’ - BY,
(31b) R, = 1B(B’ - 47,
(31¢) Ry =-iC(4+B),
(31d) R=-14+B),

YA 2 4
(31e) IRicl® = 3R” = 34,
The Ricci flow equations are then
(32a) %A:%pzﬁ—AmA-Bm
(32b) %B=§p2§+AmA—mL

d 2 2

(32¢) C=3C(4+B).

Noting the symmetry of these equations under interchange of 4 and B,
we may without loss of generality assume that 4, > B,. Then from the
eguation

d 4
(33) E(A_B)__E
it follows that 4 > B for all values of ¢.

(A+ B)*(4- B),
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This assumption, substituted into (32), allows us to derive a tight set of
boundson A, B, and C. First, for 4, from (32a) and 4 > B we obtain
the inequality

d 4 ;3
—A<—=-A".
(34) th < 3A
Integrating this gives the upper bound
2,-1/2
(35) A< A1+ 8450712,

which shows that 4 shrinks at least as fast as 1/ 1'% . Since B < A4, we
have the same upper bound on B. To find a lower bound on B (and
consequently on A4 ) we substitute the assumption 4 > B into (32b) to
get

d 4 3
(36) EB < —§B .
Integrating this yields

2
(37) B > By(1+3B,1)

Then to bound C, we may use the condition C = ﬁ along with the
bounds on 4 and B, or the evolution equation (32c¢) to get

d 2 2(A2+2AB+B2)>4

—1/2 —-1/2

> By(1+ 8431

_ 2=_ _
(38) EC_ 3C(A—i—B) 3 1B Z 3>

which implies

(39) C>C,+4
We then estimate

d 2 2 8 2 8 A
(40) a’tC 3,(A—#B)C_3A C_31+§A(2)t

from which we derive
8 (4,
(41) C<Gt+3 (B—O)t.

These results show us that C expands linearly in ¢, while 4 and B
shrink at the rate 1/ 1"/? . We now wish to show that as 4 and B shrink,
they approach each other. Specifically, we will show that 4 — B decreases
faster than does 4+ B.

We use our bounds on 4 and on B to obtain the estimates

-16 d -16

(42) —5-A'(A=B)< —(4-B) < 5B (4~ B).
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Integrating (and again using the bounds on 4 and B), we find
(43)  (4y—By)(1+ 84207 < Ad— B < (4,-By)(1+ 34007
For A+ B, we have

d 4 4
E(A+B) = —5[(A—B)2+AB](A+B) = ~§[A2+Bz—AB](A+B).
We use the first equality and the bound on B in (37) to get the estimate

d ' 4 4 2 4 2 8 52,1

(44)

Integrating this gives
(46) A+B < (4g+By)(1+ 8B

Similarly, we use the second equality in (46) and the bound on A4 in (35)
to get the lower estimate

d 4 2 8 2 8 » 8 2.1
- — > = = =
(47) A+ B) 2 —z(4"+ B) 2 34" 2 —34,(1 + 34,1) .
Integrating this yields
(48) A+B> (4, +By)(1+ 8407

From these estimates, we see that the difference 4 — B is decreasing
faster than the sum A4 + B, so that 4 and B approach each other as
t — oo. With these bounds on 4 + B, we can also bound the scalar
curvature by

(49) |R0|(1+8A) 2 <|RI<[R,|(1+ 8B}~

and the norm of Ricci by

(50) IRic|l < [Ricyll(1 + $B;0)~"

From this analysis we see that all Ricci flows in class £(1, 1) approach
cigar degeneracy. Further, all involve 4 converging to B. Note, however,
that the condition 4 = B does not characterize a subclass of E(1, 1)
geometries with nontrivial isotropy. We recall that there are no E(1, 1)
geometries which have isometry group of dimension greater than three.

(f) E(2): The E(2) class does admit an Einstein metric—the flat ge-
ometry. We show here that E(2) Ricci flows all converge exponentially to
flat metrics.
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The E(2) curvatures are

(51a) R, =144’ - B,

(51b) R, =1B(B - 4%,

(51¢) Ry, =-iC(4-B),

(514) R=—1(4-BY,

(51e) IRic)’ = (4> - B*)" + L4 - B)*.

Note that these vanish (and the geometry is flat) if and only if 4 = B.
The Ricci flow equations for the E(2) class are

d

(52a) 2a= 244+ B4 B),
(52b) ditB - %B(zg +A) (4 B),
(52¢) ditc = §C(A - B~

The usual arguments, together with the evolution equation
(53) dit(A—B) - _g(A3—B3)=—§(A2+AB+B2)(A_B),

allow us (without loss of generality) to choose 4, > B, and thence to
deduce that 4 > B for all ¢. It thus follows from (52) that A4 is non-
increasing while both B and C are nondecreasing, so that we have the
bounds

(54a) By<A< Ay,
(54b) B, <B< A4,,

A
(54¢) C,sC< COB—;’.

Note that the upper bound on C is obtained due to the fact that ABC is
a constant along the flow.
Using the bounds (54), from (53) we derive the estimate

(55) %(A ~B)< —4B)(4- B).

Integrating gives

_am?
(56) A - B < (4, — Bye .
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This shows us that 4 and B approach each other exponentially, i.e., the
flow converges to a flat metric. This is confirmed by examining the bounds
on the scalar curvature and the norm of Ricci:

_ 2
(57a) IR| < |Ryle "%,

2
(57b) IRic]| < Ke™*%",
where K depends only on 4, and B,.

4, Ricci flow of the non-Bianchi classes

Three classes of locally homogeneous geometries remain: H(3), SO(3)x
R',and H (2) xR' . The metrics in these classes all have isometry groups of
at least four dimensions, and each class contains at most a two-parameter
family of metrics. As we shall now see, the Ricci flow analysis for these
classes is very simple.

(a) H(3): All the geometries in this class have constant negative cur-
vature; their metrics are all constant multiples of the standard hyperbolic
metric;

(58) g =Agy.

Each metric is a fixed point of the Ricci flow, so the Ricci flow in this class
is trivial:

(59) glt)y=g, vi=0.
(b) SO(3) x R': The metrics in this class all take the product form
(60) g=Dgp+Egg,

where gg: is the metric on R! , &2 1s the round metric on the two-sphere,
and D and E are constants (the two parameters of this family of metrics).
None of them are Einstein metrics, so the Ricci flows cannot converge. We
find that in fact the Ricci flows of all metrics in this class go singularly in
finite time.

Choosing a standard basis {dy; d@, sin@ d¢} we calculate the curva-
ture and find

(61a) Ry =0,
(61b) Ry, =1,
(61c) Ry =1,
(61d) R=2/E,

(6le) IRic)* = 2/E>.
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It follows that the Ricci flow equations (in the usual normalization) take
the form '

d 2
(62a) EE =-3
d 4
(62b) c_17D = §D/E.
We easily integrate (62), obtaining the solutions
(63a) E=E,— %1,
(63b) . D=D,E}/(E, - 1)

Clearly the round two-sphere shrinks (undistorted) linearly in ¢, while the
scale on R' (which is the radius of the circle for this metric on xS 1)
expands at the indicated rate. At time ¢ = %Eo , the radius of the sphere
reaches zero, and a curvature singularity is obtained. Note that this is the
only class of locally homogeneous geometries whose Ricci flows do achieve
curvature singularities.

One may avoid these curvature singularities by using a different nor-
malization for Ricci flow, namely, the one given by

(64) % = —2Ric+ (*R),g.

where R is the scalar curvature of the metric on S°, and { ), indicates
averaging over S? . This normalization preserves the volume of the two-
sphere geometry rather than the volume of the full three-geometry. Applied
to metrics of the form (60), equation (64) reads

d
(65a) H—tE =0,
(65b) ;—tD =2D/E,
whose solution is
(66a) E=E,,
(66b) D = D™,

which is nonsingular for all ¢.
(¢) H(2) x R' : These metrics take the form

(67) g =Dyp+Eyp,
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where 7,2 is the metric on the hyperbolic plane. Again, there are no
Einstein metrics in the class, and so no convergence occurs. As we now
show, Ricci flows in this class all exhibit pancake degeneracies.

In the standard basis {dy; d6, sinh8dg¢}, the curvatures for metrics
of the form (66) are as follows:

(68a) R, =0,

(68b) R,, =~1,

(68c) R, =1,

(68d) R=-2/E,

(68¢) IRic||* = 2/E>.

Then the Ricci flow equations take the form
d 2

(69a) TE=73.

(690) 4p-_to.

We integrate these to get solutions

(70a) E=E,+3t,

(70b) D =D E,[(E,+ 21)".

The signs here are crucial. The scale of the hyperbolic geometry, E,
increases linearly in time, and hence is nonsingular. The other scale factor,
D, decreases, but only at the rate 1/ & . Noting that the curvature decays,
according to

(71) [Ricl| = V2/(Ey+ 21),

we verify pancake degeneracy behavior.

As with the SO(3) x R' class of geometries, we may use an alternate
Ricci flow normalization of the form (64) to prevent expansion of the
hyperbolic part of the metric, Ey, . We then have

(72a) E=E,,
(72b) D=Dge

The flow is nonsingular for all ¢.

—2/E,t

5. Conclusion

Our analysis provides a complete picture of the behavior of the Ricci
flow of locally homogeneous Riemannian metrics on closed manifolds.
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The results are summarized, by class, in Table 2. The key conclusions are
the following:

(a) Whenever the flow can converge (i.e., in those classes which admit
Einstein metrics: R’, H(3), SU(2), E(2)) it does converge. Further, the
convergence is exponential.

(b) Curvature singularities occur only in the flows in the class SO(3)xR.
These may be averted by changing the Ricci flow normalization.

(c) In all other classes— SL(2, R), Heisenberg, E(1, 1), H(2)xR—the
curvature dies along the flow as 1/¢ and the flows approach either pancake
or cigar degeneracies.

(d) In all classes except Heisenberg, the generic flows approach the flows
of the maximally symmetric members of the class.

TABLE 2. Summary of Ricci flow results

Class Behavior Rate
‘ Trivial flow
B> Convergence to flat space (all metrics flat)
SU(2) Convergence to round sphere Exponential
SL(2, R) Pancake Degeneracy || Ric|| ~ 1/t
Heisenberg Pancake Degeneracy ||IRiclf ~ 1/t
E(1,1) Cigar Degeneracy [|Ric]| ~ 1/t
E(2) Convergence to flat space Exponential
Convergence to Trivial
H(3) hyperbolic space (all members hyperbolic)
80O(3) x R! Curvature Singularity ||Ricl] ~ 1/(1 — &)
H(2) x R Pancake Degeneracy [iRic|] ~ 1/¢

While this work is partially motivated as a model study of the behavior
of Ricci flow in three dimensions, its main motivation comes from its
role in Hamilton’s program for the study of Thurston’s geometrization
conjecture. We now see what sort of behavior to look for in generic Ricci
flows, as one attempts to show that, away from local curvature singularities,
they approach the Ricci flows of locally homogeneous geometries.

The main difficulty with Hamilton’s program is its treatment of singu-
larities. No way is yet known to extend solutions past the singularities
which generally—and crucially—occur. To get around this difficulty, we
have begun looking at families of inhomogeneous metrics which have cer-
tain symmetries and topological conditions preventing the occurrence of
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S? and T2 pinches. One such family consists of the collection of metrics
(73) g= e™1do” + ef[eWa'x2 + e_Wdyz]

(where A is a periodic function of 6, W is a function of # with
W6+ 2n) = W(8)+ A for the topological constant A, and f is a con-
stant) defined on the manifold A 3 which is constructed as a solv-twisted
T? bundle over the circle (with coordinate 8). For W linear in 6, these
metrics are locally homogeneous, lying in the class E(1, 1). Elsewhere [4],
we show that the Ricci flows of metrics of the form (73) always asymptot-
ically approach the Ricci flow of those in FE(1, 1). This result provides
some measure of support for Hamilton’s program. Further work of this
nature is underway.
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